MICROENCAPSULATION PROCESS FACTORS WHICH INFLUENCE THE SPHERICITY OF 1 mm o.d. POLY(α-METHYLSTYRENE) SHELLS FOR ICF

by
B.W. McQUILLAN and A. GREENWOOD

JUNE 1998
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
MICROENCAPSULATION PROCESS FACTORS WHICH INFLUENCE THE SPHERICITY OF 1 mm o.d. POLY(\(\alpha\)-METHYLCYLSTYRENE) SHELLS FOR ICF

by

B.W. McQUILLAN and A. GREENWOOD

This is a preprint of a paper to be presented at the 12th Target Fabrication Specialists Meeting, April 19–23, 1998, Jackson Hole, Wyoming and to be published in Fusion Technology.

Work supported by the U.S. Department of Energy under Contract No. DE-AC03-95SF20732

GA PROJECT 3748
JUNE 1998
ABSTRACT

We have identified three process variables which determine the sphericity of polymer shells made by dual orifice microencapsulation. 1) The density mismatch between the outer aqueous solution and the polymer oil phase must be minimized. We have minimized this density mismatch by adjusting the water bath temperature. 2) The stir rate has an effect, with a minimum non-sphericity located near 50–70 rpm stir rate. 3) The outer aqueous solution must have enough total oil solvent (fluorobenzene in the drops) to be beyond the aqueous saturation level (1.5 g/l) at the beginning of the solvent extraction. Using the optimal conditions for a 1000 μm o.d. shell, we produce a minimum variation in the radius of a given shell, in the neighborhood of 0.4 μm.

I. INTRODUCTION

For an ICF spherical target to have optimum uniform implosion performance, the shell target must be as spherical as possible. In the PAMS/GDP process, the initial PAMS mandrel shell is critical in producing spherical targets—if the PAMS shell is not spherical, then later coatings will also be non-spherical. Producing the required sphericity (or out-of-round, OOR) becomes more and more difficult, as the target diameter increases from 0.4 mm (Nova) to 1 mm (Omega) to 2–3 mm (NIF). For Omega shells discussed here, the specification for OOR on the final target shell is less than 3 μm. This specification sets a maximum tolerable OOR on the PAMS mandrel of less than 1 μm OOR. OOR is defined as (d_max – d_min)/2, and 4π OOR is defined as √2 OOR.

The dual orifice microencapsulation process involves making liquid compound drops in a droplet generator. An inner drop of water (W1) is surrounded by a oil drop (O1) composed of an 11 wt% PAMS (400 K MW, Scientific Polymer Products) in fluorobenzene (99%, Aldrich). The drop is formed by syringe pumps sending the solutions through a dual orifice needle, at typical flows of O1 and W1 of 50 cc/hour each (50/50 O1/W1). The drops are stripped off the needle by aqueous PVA solution (W2) (0.2 wt% PVA, 25 K MW, 88% hydrolyzed, Polysciences) flowing at about 250 cc/minute. This process makes Omega shells at about 2000/minute. The compound drops in W2 flow down a collection tube into a one liter beaker. When filled to one liter, the beaker is removed to a curing water bath, and the solution is stirred for 6 hours. The fluorobenzene leaves the O1, leaving a PAMS shell wall surrounding the W1 interior drop. The solvent free shells are collected, washed, and the interior water is extracted, to yield the final PAMS shells.

The dual orifice microencapsulation process is deceptively simple, with few process variables. However, these variables influence each other, so a change in one variable modifies the shell parameters associated with other variables. For example, a change in the water bath temperature effects the time for solvent removal, the solubility of the oil solvent in the aqueous phase, the densities of each phase and the density mismatch, the viscosities of the solutions, and the interfacial surface tensions involved in making the droplet spherical. Thus, one process variable (bath temperature) can effect many factors which impact the final shell properties. In this paper, we delineate three key process variables which impact the shell sphericity.

II. RESULTS

A. DENSITY MISMATCH

When we began to make encapsulated shells in the droplet generator, we used fluorobenzene, rather than the
previous binary solvent system, benzene plus 1,2
dichloroethane, in order to have a solvent system which
stays at the density of the water phase throughout the
extraction. We began with a 60°C curing water bath, and
we were producing Omega shells with an OOR of less
than one μm, within the specification. However, the walls
of those shells were loaded with vacuoles, which were
undesirable. We found that upon addition of CaCl₂ to the
W₂, we could prevent the formation of vacuoles if the
final CaCl₂*2H₂O concentration in the beaker was 1.5
wt%. However, from that point, the OOR of the shells
became 2–4 μm, well above the <1 μm specification (see
Fig. 1).

Bob Cook had estimated that the maximum OOR of a
simple liquid oil drop should look like

\[
\text{max OOR} = g(\Delta \rho/\gamma)R^3
\]

(1)

where \(g \) = acceleration due to gravity = 9.8 m/s², \(R \) is the
shell radius, \(\Delta \rho \) is the difference in density between the oil
drop and the surrounding W₂ phase, and \(\gamma \) is the interfacial
surface tension. Rich Stephens measured the approximate
surface tension in this system to be 10⁻² dyne/cm. This
equation required that we look at the density mismatch
between our O₁ solution and our new W₂ with the
additional CaCl₂.

Figure 2 shows plots of density versus temperature for
pure fluorobenzene, pure water, and 1.5 wt% CaCl₂*2H₂O
aqueous solution. The fluorobenzene curve is drawn as a
straight line through the two known data points at 15 and
30°C. The curve for water is taken from the CRC. To
approximate the temperature dependence of the dilute
CaCl₂ solution, the pure water curve is shifted up to match
density at 20°C of 1.0091 g/cc interpolated from the
CRC. For pure water W₂, the density match with O₁
appears near 53°C, while the density match for the CaCl₂
W₂ is lower near 38°C. Figure 3 shows the estimated max
OOR versus temperature of curing, for the two W₂ systems, using the density differences in Fig. 2. One sees
in Fig. 2 that for pure water W₂, the max OOR is near
1 μm at 60°C, but the max OOR for the CaCl₂ W₂ is about
3.5, close to the experimentally observed 2–4 μm.

We decreased the curing bath temperature from 60 to
40–45°C when using CaCl₂, and the shell OOR decreased
back below 1 μm (Fig. 1). The temperature for minimum
OOR was found to be near 43°C. The increase in
temperature from 38 to 43°C is probably explained by the
O₁ having a slightly higher density than pure
fluorobenzene. In later runs, when we replaced the CaCl₂
with NH₄Cl, a similar density match calculation was
performed, and the optimum curing bath temperature is at
47.5–48.0°C.

B. Stir Rate

Having corrected the density mismatch by changing
the curing temperature, the effect of stir rate in the beaker
was studied. We anticipated that the shear developed by
the stirrers would deform the spherical shell. Cook has
estimated the shear effect on max OOR of a simple drop as

\[
\text{max OOR} = 4\eta(2\pi * \text{rpm}/60) R^2/\gamma
\]

(2)

where \(\eta \) is the W₂ viscosity = 0.014 poise.

In Fig. 4, the stirring rpm was held constant
throughout the curing period, in all the batches. Obviously,
there is a shallow minimum in OOR with respect to stir
rpm. The straight line is a plot of the Cook equation, with

Fig. 1. Omega shell batch OOR as a function of time. Before early May 1997, a 60°C cure and no salt was used. After early
May, a 60°C cure was used and CaCl₂ was added. After September 1997, the temperature of the cure was reduced near
43°C, and CaCl₂ was used. Looking at the shell batches with OOR < 1 μm, these two transition dates are quite
obvious.
C. QUANTITY OF FLUOROBENZENE

The third factor which influences the OOR is the total quantity of fluorobenzene present in the beaker. Figure 5(a) shows the data for a single day’s run, where the O1/W1 flows [(cc/hour)/cc/hour] were changed after filling two beakers, from 50/50 to 20/20 to 25/20, for the same PVA W2 flow rate. Thus, the lower flow rates correspond to fewer shells in the beaker, and hence less fluorobenzene. The runs at 50/50 produced the typical shell OOR near 0.5 mm, but the runs with lower flow rates had dramatically poorer OORs. This dramatic change seems to be explained in Fig. 5(b), where the grams of fluorobenzene per beaker are calculated, along with the mark for the literature value for the solubility of fluorobenzene in water at 25°C.6

The solubility limit seems to correspond with the change in OOR. It seems reasonable, that if the total quantity of fluorobenzene introduced into the beaker is below the solubility limit, then the fluorobenzene in the drops dissolves into the W2 rapidly, freezing the drops as shells before they can tumble and become spherical. Going above the saturation limit requires evaporation of fluorobenzene from the solution in order to dry the shells. The longer time this evaporation requires apparently permits the shells to become spherical. This effect of fluorobenzene saturation had been noted in making NOVA shells, where the O1 flows are typically lower, where saturating W2 with fluorobenzene before the run improved the NOVA shells’ OOR.

III. CONCLUSIONS

The formation of spherical microencapsulated PAMS shells requires control of process variables which govern their sphericity. We have identified three variables (density mismatch, stir rate, and fluorobenzene present in excess of saturation) which must be controlled and
Fig. 4. A plot of experimental OOR versus stir rate in the beaker, and a plot of the Cook shear equation of max OOR versus rpm. (γ is estimated to be 10 dyne/cm, and η of W2 is taken as 0.01 poise.) 0.1% is the PVA concentration (wt%) in W2, unless otherwise noted.

optimized in order to form 1 mm o.d. shells with variation in their diameter around the shell of less than 1 μm.

ACKNOWLEDGEMENT

Work supported by U.S. Department of Energy under Contract No. DE-AC03-95SF20732.

REFERENCES

Fig. 5. (a) OOR as a function of the O1 syringe pump flow. (b) OOR as a function of the quantity of fluorobenzene added, with the fluorobenzene saturation level marked at 1.5g/l.