Localized Electron Cyclotron Current Drive in DIII–D: Experiment and Theory

by
Y.R. Lin-Liu

*CompX
†Lawrence Livermore National Laboratory

Presented at the American Physical Society Division of Plasma Physics Meeting Quebec City, Canada

October 23–27, 2000
SCIENTIFIC UNDERSTANDING IS ESSENTIAL FOR ECH AND ECCD TO BE ACCEPTED

- Due to its potential for generating localized off-axis current, electron cyclotron current drive (ECCD) is proposed
 - To sustain hollow current profile in advanced tokamak (AT) discharges
 - To suppress neoclassical tearing modes (NTM)
FOR STEADY STATE ADVANCED TOKAMAK, NON-INDUCTIVE CURRENT NEEDS TO BE SUPPLIED AT THE HALF RADIUS

- Analysis of high performance DIII-D discharge with $\beta_N H_{89} \sim 10$ for $5 \tau_E$
- $E_{||}$ measured; with assumption of neoclassical conductivity, gives J_{OH}
- ECCD at the half radius need to be supplied for steady-state
NEOCLASSICAL MHD INSTABILITIES CAN DEGRADE PERFORMANCE BELOW IDEAL β-LIMIT

β_N increases with time as the 23 MW NBI is applied, reaching a peak and then decreasing.

DD neutron rate shows a peak at around 4.5 s.

$\frac{d\beta}{dt}$ (outside plasma) indicates a mode with $m/n = 3/2$.

- ECCD replaces missing bootstrap current to suppress NTM

Z. Chang
SCIENTIFIC UNDERSTANDING IS ESSENTIAL FOR ECH AND ECCD TO BE ACCEPTED

- Due to its potential for generating localized off-axis current, electron cyclotron current drive (ECCD) is proposed
 - To sustain hollow current profile in advanced tokamak (AT) discharges
 - To suppress neoclassical tearing modes (NTM)

- This talk will discuss results from recent study of ECCD in the DIII–D tokamak
 - To demonstrate controllable localized off-axis ECCD
 - To validate wave optics and ECCD physics
CYCLOTRON RESONANCE LEADS TO LOCALIZED POWER DEPOSITION AND CURRENT GENERATION

- Cyclotron resonance and Doppler shift: \(\omega - \ell \omega \gamma - k_{||} v_{||} = 0 \)

\[\Delta \Omega \text{ (half-width)} \sim 1.7\degree\]

\[\phi \text{ (Toroidal injection angle)} \sim 27\degree\]
LONGER COLLISION TIME AT HIGHER ENERGY IS A KEY FOR CURRENT GENERATION

- Fisch-Boozer current drive mechanism

\[\delta v_\perp \]

\[v_{\parallel 0} \quad v_{\parallel} \]

\[e^{-\frac{t}{\tau_e (v + \delta v)}} \]

\[e^{-\frac{t}{\tau_e (v)}} \]
TRAPPING EFFECTS IN TOROIDAL GEOMETRY REDUCE ECCD EFFICIENCY

- Fisch-Boozer current drive mechanism
- Electron trapping effects in toroidal geometry (Ohkawa effect)
FOKKER-PLANCK CODE IS THE STANDARD THEORETICAL MODEL FOR ECCD

- Quasi-linear Fokker Planck Equation

\[\mathbf{v}_\parallel \cdot \mathbf{b} \cdot \nabla f - C_{e}f = S_{rf}(f) - \frac{e}{m} E_\parallel \frac{\partial f}{\partial u_\parallel} \]

- Bounce average

\[-C_{e}f = S_{rf}(f) - \frac{e}{m} E_\parallel \frac{\partial f}{\partial u_\parallel} \]

- Linearized equation + Green’s function techniques

\[f \cong f_M + f_{rf} + f_E \]

- Modeling Tools

1. ONETWO/TORAY-GA
 - Raytracing based on cold plasma dispersion
 - Weakly relativistic absorption
 - Cohen’s CD package (linear)
 - GA new CD package (linear)

2. CQL3D (2-velocity + 1 radial)
 - Fokker Planck code
 - \(E_\parallel \) effects included
DIII-D HAS A FLEXIBLE ECH SYSTEM

- New steerable launcher (PPPL) has between-shot toridal and poloidal steering capability
- The experimental results described here use two gyrotrons with up to 1.3 MW injection power
- The system has flexibility for experimental setup to test theory
MSE MEASUREMENTS ARE CRUCIAL FOR DETERMINATION OF ECCD PROFILE

- MSE (motional Stark effect) diagnostic measures magnetic field pitch angles at different major radii, so $B_Z = B_t \tan^{-1}$ (pitch angle)

- From Ampere’s law $j_\phi \approx -\frac{1}{\mu_0} \frac{\partial B_Z}{\partial R}$

so the local change in j_ϕ due to ECCD is proportional to the change in $\Delta B_Z/\Delta R$, where ΔB_Z is the difference in B_Z between adjacent MSE channels and ΔR is the spatial separation

- The measured $\partial B_Z/\partial R$ are compared to simulations to include the effects of small changes in bootstrap, NBCD, and Ohmic currents

- Total driven current is determined from a best statistical fit to the data, varying the location, width, and magnitude of the driven current in the simulation
LOOP VOLTAGE ANALYSIS AND MSE SIMULATION APPROACH
ARE COMPLEMENTARY FORMS OF CURRENT DRIVE ANALYSIS WITH DIFFERENT STRONG AND WEAK POINTS

<table>
<thead>
<tr>
<th>Loop voltage analysis:</th>
<th>Better for extended current drive sources</th>
<th>Inductive and non-inductive currents are separated</th>
<th>MSE data is used only as fit constraint for EFIT</th>
<th>No assumptions about current drive sources are needed</th>
<th>But</th>
<th>Current profile shapes are limited by EFIT basis functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE simulation approach:</td>
<td>Better for localized current drive sources</td>
<td>Only net change in current density is analyzed</td>
<td>Raw (or slightly manipulated) MSE data are utilized</td>
<td>A specific current drive model must be assumed</td>
<td>But</td>
<td>Model parameters can be varied to find best fit to MSE data</td>
</tr>
</tbody>
</table>
MSE MEASUREMENTS SHOW THAT THE INCREASE IN CURRENT DENSITY FROM ECCD IS AS LOCALIZED AS RAY TRACING CALCULATIONS PREDICT
ELECTRON CYCLOTRON CURRENT DRIVE PROVIDES LOCALIZED CURRENT WITH GOOD CONTROL

- Observed changes in MSE signals consistent with ray tracing calculations

![Diagram showing Experimental Profiles of ΔJ_{tot}](image)
MEASURED ECCD FROM MSE DATA IS IN GOOD AGREEMENT WITH FOKKER-PLANCK CODE INCLUDING E_{\parallel} EFFECT
MEASURED ECCD INCREASES WITH TOROIDAL INJECTION ANGLE (i.e., $N_{||}$) IN AGREEMENT WITH THEORY EXCEPT FOR THE LARGEST ANGLES.
ECCD EFFICIENCY DECREASES WITH RADIUS (FOR POLOIDAL ANGLE ≈ 90 deg) AS EXPECTED FROM THEORY DUE TO TRAPPING EFFECTS

$\zeta = \frac{e^3}{\varepsilon_0^2} \frac{I_{ec} n_e R}{P_{ec} T_e}$

- Anomalously high ECCD is observed at largest radius
- Need to verify this at higher ECH power with smaller error bars
FINITE COLLISIONALITY ALLOWS FOR TRAPPING–DETRAPPING PROCESSES

- Effects are more significant at low energies

Diagram Description

- **Trapped Electrons (Carry no current)**
 - Located within the shaded region

- **Boundary Layer Electrons (Carry current)**
 - Located on the boundary of the shaded region

- **Wave-Particle Interaction**
 - Arrows indicating the interaction path

- **Cyclotron Resonance**
 - Path highlighted in red

- **Axes**
 - U_\perp, U_0, U_\parallel
Collisionality enhancement of efficiency is appreciable in the off-axis ECCD cases.

- Green's function formulation is extended to calculate ECCD efficiency in finite collisionality regime.

- Lorentz gas model is used to simplify numerical calculations.

- Appreciable enhancement is possible in parameter regimes of the off-axis ECCD experiments:
 - $\omega \approx 2\omega_c$, $n_\parallel = 0.5$
 - $T_e \approx 1.0$ keV, $v_{e*} \approx 0.1$

Enhancement of ECCD efficiency is proportional to $\sqrt{v_{e*}}$.
LOCALIZED CHANGE IN CURRENT PROFILE DURING ECCD IS CLEARLY OBSERVED IN ELMING H–MODE PLASMAS

![Graph showing localized change in current profile during ECCD](image_url)

- **Major Radius (m)**: 1.6, 1.8, 2.0, 2.2
- **Time (ms)**: 0, 1000, 2000, 3000, 4000
- **Electron Cyclotron Current Drive (ECCD)**

Note:

- **Dα ECH**
- **SAN DIEGO NATIONAL FUSION FACILITY**

Legend:

- **ECCD (TORAY – GA)**
- **Magnetic Axis**
ECH IS EFFECTIVE AT HEATING ELECTRONS

- 0.8 MW ECH applied at $\rho \sim 0.4$; no NBI
- Measurement of $T_e \approx 15$ keV by ECE roughly supported by Thomson scattering and pulse height analysis

![16 Channels of ECE](image)
SUMMARY

- Localized off-axis ECCD was clearly demonstrated in recent proof-of-principle experiments on DIII–D using the MSE simulation approach.

- Good agreement was observed between the measured ECCD and the theoretical predictions from coupled ray tracing and Fokker-Planck calculations.

- Improved EFIT reconstruction coupled with loop voltage analysis shows promise for directly determining localized ECCD.

- The present study provided a scientific basis for ECCD applications in Advanced Tokamak (AT) operations.
RELATED PRESENTATIONS AT THIS CONFERENCE

- W.R. Fox, HP1.067 (ECCD)
- L.L. Lao, NP1.079
- C.C. Petty, NP1.080
- R.W. Harvey, NP1.081
- J.M. Lohr, MO1.005 (ECH system)
- R. Prater, M01.006 (ECH and ECCD)
- R.J. La Haye, NP1.091 (NTM stabilization)
- F.W. Perkins, NP1.092
- E.J. Strait, MO1.003
- C.M. Greenfield GP1.112 (ITP)
POLOIDAL SCANS SHOW SYSTEMATIC INCREASE IN ECCD EFFICIENCY TO HIGH FIELD SIDE

- Theoretically the increase in ECCD efficiency with poloidal angle is due to (a) reduced trapping effects and (b) wave absorption on higher energy elections from N_\parallel upshift.

\[
\zeta = \frac{e^3}{\varepsilon_0^2} \frac{l_{ec} n_e R}{P_{ec} T_e}
\]
Radial and poloidal scans have been obtained to test the effects of trapped particles.

- \(P_{ECH} = 0.95 - 1.14 \text{ MW} \)
- \(\bar{n} = 1.66 - 1.85 \times 10^{13} \text{ cm}^{-3} \)
- \(q_{95} = 5.95 - 6.33 \)

Radial Scan
- Poloidal Scan \(\rho = 0.2 \)
- Poloidal Scan \(\rho = 0.34 \)
- Poloidal Scan \(\rho = 0.47 \)
THE MOTIONAL STARK EFFECT (MSE) DIAGNOSTIC MEASURES
THE CHANGES IN THE INTERNAL MAGNETIC FIELDS DURING ECCD

Toroidal Field Coils

360/0°

15 MSE

30° Left Neutral Beam

45 MSE

1.55 m 2.0 m 2.3 m

Radial Channels

Inner wall

v_b

\(B_T \)

\(\Omega \)

\(\alpha' \)

315 MSE

2.3 m

2.0 m

1.55 m

DIII-D
NATIONAL FUSION FACILITY
SAN DIEGO

NATIONAL FUSION FACILITY
SAN DIEGO

GENERAL ATOMICS

056–00/CCP/wj
CENTRAL ECCD CASES SHOW THAT EFFICIENT CURRENT DRIVE IS ACHIEVED WITH $E_{||} \approx 0$
(RELEVANT SITUATION FOR STEADY STATE ADVANCED TOKAMAKS)

- Quasilinear effects, although moderate, are required to bring theory and experiment into agreement.
OFF-AXIS ECCD TO SUSTAIN NEGATIVE CENTRAL MAGNETIC SHEAR

<table>
<thead>
<tr>
<th>Physics features</th>
<th>10 MW (Source) Using ECCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Good bootstrap alignment at high β</td>
<td>7 (10 source)</td>
</tr>
<tr>
<td>2. High bootstrap fraction (~70%)</td>
<td>6.5</td>
</tr>
<tr>
<td>3. Second ballooning regime access</td>
<td>6.5</td>
</tr>
<tr>
<td>4. NTM stable in negative shear region</td>
<td>1.6</td>
</tr>
<tr>
<td>5. High δ and wall stabilization</td>
<td>1.07</td>
</tr>
<tr>
<td>6. No sawteeth ($q_0 > 1$)</td>
<td>0.32</td>
</tr>
<tr>
<td>7. High β_N</td>
<td>0.57</td>
</tr>
<tr>
<td>8. High H_{89p}</td>
<td>0.4</td>
</tr>
<tr>
<td>9. High n (10^{20} m$^{-3}$)</td>
<td>15</td>
</tr>
<tr>
<td>10. High T_e (0)</td>
<td>8.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physics features</th>
<th>10 MW (Source) Using ECCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Good bootstrap alignment at high β</td>
<td>7 (10 source)</td>
</tr>
<tr>
<td>2. High bootstrap fraction (~70%)</td>
<td>6.5</td>
</tr>
<tr>
<td>3. Second ballooning regime access</td>
<td>6.5</td>
</tr>
<tr>
<td>4. NTM stable in negative shear region</td>
<td>1.6</td>
</tr>
<tr>
<td>5. High δ and wall stabilization</td>
<td>1.07</td>
</tr>
<tr>
<td>6. No sawteeth ($q_0 > 1$)</td>
<td>0.32</td>
</tr>
<tr>
<td>7. High β_N</td>
<td>0.57</td>
</tr>
<tr>
<td>8. High H_{89p}</td>
<td>0.4</td>
</tr>
<tr>
<td>9. High n (10^{20} m$^{-3}$)</td>
<td>15</td>
</tr>
<tr>
<td>10. High T_e (0)</td>
<td>8.5</td>
</tr>
</tbody>
</table>